c# - 1D Fast Fourier Transform -
what algorithm following?
what understand following source code is:
dir
direction of fft: forward=1, inverse=-1.x
real party
imaginary part
what m
here?
if x
= {1, 1, 1, 1, 0, 0, 0, 0}, and, y
= {0,0,0,0,0,0,0,0,0}, value of m
?
//inplace 1d fft public static void fft1d(int dir, int m, ref double[] x, ref double[] y) { long nn, i, i1, j, k, i2, l, l1, l2; double c1, c2, tx, ty, t1, t2, u1, u2, z; /* calculate number of points */ nn = 1; (i = 0; < m; i++) nn *= 2; /* bit reversal */ i2 = nn >> 1; j = 0; (i = 0; < nn - 1; i++) { if (i < j) { tx = x[i]; ty = y[i]; x[i] = x[j]; y[i] = y[j]; x[j] = tx; y[j] = ty; } k = i2; while (k <= j) { j -= k; k >>= 1; } j += k; } /* compute fft */ c1 = -1.0; c2 = 0.0; l2 = 1; (l = 0; l < m; l++) { l1 = l2; l2 <<= 1; u1 = 1.0; u2 = 0.0; (j = 0; j < l1; j++) { (i = j; < nn; += l2) { i1 = + l1; t1 = u1 * x[i1] - u2 * y[i1]; t2 = u1 * y[i1] + u2 * x[i1]; x[i1] = x[i] - t1; y[i1] = y[i] - t2; x[i] += t1; y[i] += t2; } z = u1 * c1 - u2 * c2; u2 = u1 * c2 + u2 * c1; u1 = z; } c2 = math.sqrt((1.0 - c1) / 2.0); if (dir == 1) c2 = -c2; c1 = math.sqrt((1.0 + c1) / 2.0); } /* scaling forward transform */ if (dir == 1) { (i = 0; < nn; i++) { x[i] /= (double)nn; y[i] /= (double)nn; } } }
the implementation of fft have posted limited inputs of size 2m
. here m
indirectly specify size of fft block size. so, example x = {1,1,1,1,0,0,0,0}
, y={1,1,1,1,0,0,0,0}
being arrays of size 8=23, m
equal 3.
note there no additional checks size of arrays x
, y
make sure @ least size.
Comments
Post a Comment